МЕНЮ
"Я хочу, чтобы люди начали предлагать какие-то серьезные,
большие, глобальные, амбициозные цели, которые Россия
могла бы себе поставить "Российская программа освоения космического пространства и дальнейшую перспективу "Когда появятся космические города? Мнение экспертов. Космический ракетный комплекс "Ангара" ГКНПЦ имени М.В.Хруничева. Пуск КРН "Ангара-А5.1Л", 23 декабря 2014 г., гор. Плесецк Первый пуск КРН "Ангара-1.2ПП" 9 июля 2014 г., гор. ПлесецкАнтигравитационный двигатель В.С. Леонова.Теория Суперобъединения - объединяет с единых позиций системных иссследований Аргументы Недели. Марс почти рядом Леонов. У России был шанс вместе с белорусами слетать на Марс в 2010 году Концепт шестиместного пилотируемого квантоида класса "Земля-орбита-Земля" Россия делает новый шаг в космическое пространство Леонов. О подрывной деятельности комиссии по лженауке РАН Леонов В.С. о новых космических технологиях Леонов. Черные дыры в Российской академии наук (РАН) Леонов. Начало новой космической гонки между США и Россией Новая физика (гипотеза Козырева) получает документальное подтверждение Леонов. Коммерциализация космоса – кто мешает России быть богатой? Леонов. Коммерческий аэрокосмический орбитальный самолет с квантовым даигателем для космического туризма О концепции КА с квантовыми двигателями В.Леонова Поздравление с 20-летием открытия кванта пространства-времени Россия успешно испытала антигравитационный двигатель В.С. Леонова "Теория физического вакуума. Космические двигатели с торсионной тягой" Теория физического вакуума. Космические двигатели с торсионной тягой Психофизика и психофизические технологии Двигатель с конвертором массы Бодрова С.М. Сергей Годин: "Мы хотели сделать копию установки Джона Серла" Вся надежда на новое поколение людей с новыми знаниями и технологиями Ошибка изобретателя или "механический аналог" квантового двигателя?Понимают ли политические лидеры государств и руководители организаций, ведущих космическую деятельность,
и мы с вами, что уже сегодня начинает создаваться фундамент общественных отношений будущей внеземной
Цивилизации. Национальная программа России: Космодром "Восточный" Космодром "Восточный". Строительство второй очереди Космодром "Восточный". Строительство и подготовка к первому пускуАрхитектура орбитальных поселений. Фантастика и реальность Практически реализованные орбитальные конструкции Фантастические орбитальные поселения Плутахина Вантовые сети Макарова для космических поселенийПроектируемые околоземные и инопланетные сооружения
Новые бортовые системы космических аппаратов, "Предложение миллиардера. Где взять деньги на космические программы" Почему автономная колония на Марсе невозможна Современные барьеры инновационного развития предприятий ракетно-космическойпромышленности России Леонов. Коммерциализация космоса – кто мешает России быть богатой? М.Ковальчук. Тренд развития нашей цивилизации а XXI веке В чем причина отсутствия экономического развития России? Где взять деньги на космические программы. Артем Тарасов (Россия - Греция)
НАСА (США). Подготовка к пилотируемому полету на Луну, Марс (2035 г.) и
в дальний космос в околосолнечном пространстве. Роботы, ИИ, другая жизнь. Большие достижения и грандиозные планы. Россия США Япония Франция Канада Другая жизнь
Уникальная тематическая коллекция видеофильмов
КОСМОТЕСТ-ВИДЕО Разделы ПЛЕЙ-ЛИСТА
1. МКС - околоземное орбитальное поселение первой четверти XXI века
2. Российская программа освоения космического пространства
3. Теория Суперобъединения и Квантовые дигатели В.С.Леонова
4. Теория физического вакуума, торсионные поля, антигравитация
5. Архитектура орбитальных и инопланетных поселений
6. США. Подготовка к пилотируемому полету на Луну, Марс и в дальний космос
7. Проекты НАСА (США), основанные на новых физических принципах
8. Туристический бизнес в космическом пространстве
9. ЧП в пилотируемом космическом полете
10. Тайны Марса. Была ли жизнь на Марсе?
11. Неразгаданные тайны Вселенной
"Орбитальные поселения в околеземном космическом пространстве сделают
невесомость и космический вакуум такими же востребованными продуктами,
какими стали для нас электричество, нефть и газ". |
Антигравитационный двигатель В.С. Леонова.Теория Суперобъединения - объединяет с единых позиций системных иссследований Аргументы Недели. Марс почти рядом Леонов. У России был шанс вместе с белорусами слетать на Марс в 2010 году Концепт шестиместного пилотируемого квантоида класса "Земля-орбита-Земля" Россия делает новый шаг в космическое пространство Леонов. О подрывной деятельности комиссии по лженауке РАН Леонов В.С. о новых космических технологиях Леонов. Черные дыры в Российской академии наук (РАН) Леонов. Начало новой космической гонки между США и Россией Новая физика (гипотеза Козырева) получает документальное подтверждение Леонов. Коммерциализация космоса – кто мешает России быть богатой? Леонов. Коммерческий аэрокосмический орбитальный самолет с квантовым даигателем для космического туризма О концепции КА с квантовыми двигателями В.Леонова Поздравление с 20-летием открытия кванта пространства-времени Россия успешно испытала антигравитационный двигатель В.С. Леонова СПОСОБ СОЗДАНИЯ ТЯГИ В ВАКУУМЕ И ПОЛЕВОЙ ДВИГАТЕЛЬ ДЛЯ КОСМИЧЕСКОГО КОРАБЛЯ (ВАРИАНТЫ)
Автор изобретения
Леонов Владимир Семенович лауреат премии Правительства России в области науки и техники, научный руководитель и главный конструктор OOO «НПО Квантон», автор фундаментальных научных открытий (1996 год) кванта пространства-времени (квантона) и сверхсильного электромагнитного взаимодействия (СЭВ), создатель теории Суперобъединения (Theory of Superunification) – главной физической теории столетия и нового направления в энергетике (наземной и космической) - Квантовой энергетики (Quantum Energetics) Леонову В.С. от Коротченко В.И. 21.05.2016 21 мая 2016 года знаменательная дата -
|
СПОСОБ СОЗДАНИЯ ТЯГИ В ВАКУУМЕ И
| |
Суть изобретения: | Изобретение относится к космической отрасли и предназначено для создания тяги в новых поколениях межпланетных космических кораблей за счет использования сверхсильных взаимодействий с вакуумным полем. Предлагаемый способ создания тяги в вакууме осуществляют за счет перераспределения квантовой плотности среды вакуумного поля внутри рабочего тела в направлении, противоположном вектору силы тяги в результате деформации вакуумного поля, воздействуя на рабочее тело системой вращающихся неоднородных электрических и магнитных скрещивающихся полей, градиент напряженности которых совпадает с направлением вектора силы тяги, а рабочему телу задают одновременно электрические и магнитные свойства. По первому варианту полевой двигатель для космического корабля, снабжен электрогенератором, преобразователем напряжения и активаторами вакуумного поля, включающими электродвигатель, ротор, выполненный в виде рабочего тела из диэлектрического и ферромагнитного материала в форме усеченного конуса, основание которого соосно совмещено с ротором электродвигателя, преимущественно гиромотора, магнитной системой разнополярных электродов, которые охватывают с зазором конус рабочего тела. По второму варианту полевой двигатель для космического корабля включает корпус полевого двигателя, служащий также корпусом космического корабля, снабжен активаторами вакуумного поля, кольцевыми электрогенераторами, аккумуляторной батареей, преобразователем тока аккумуляторной батареи, системой управления тягой полевого двигателя, электродвигателями для привода роторов активаторов вакуумного поля. Изобретение позволяет обеспечить создание эффективного полевого двигателя для межпланетного космического корабля нового поколения с одновременным генерированием электрической энергии. 3 с.п.ф-лы, 28 ил. |
Номер патента: | 2185526 |
Класс(ы) патента: | F03H5/00 |
Номер заявки: | 2001113320/06 |
Дата подачи заявки: | 21.05.2001 |
Дата публикации: | 20.07.2002 |
Заявитель(и): | Леонов Владимир Семенович; Пилкин Виталий Евгеньевич |
Автор(ы): | Леонов В.С. |
Патентообладатель(и): | Леонов Владимир Семенович; Пилкин Виталий Евгеньевич |
Описание изобретения: |
Изобретение
относится к космической отрасли и предназначено для создания
тяги в новых поколениях межпланетных космических кораблей за
счет использования сверхсильных взаимодействий с вакуумным полем.
Изобретения также может быть использовано в народном хозяйстве
как энергетическое и тяговое средство для самолета, автомобиля,
трактора и других транспортных средств. Известен способ создания реактивной тяги в вакууме за счет истечения газов через реактивное сопло в результате сжигания химического топлива в реактивном двигателе (статьи "Реактивная тяга" и "Реактивный двигатель". Политехнический словарь. М.: Советская энциклопедия, 1989, с.446 ) [1]. Недостатком известного способа создания реактивной тяги является низкий коэффициент использования энергии химического топлива в реактивном двигателе, который можно выразить как полный КПД через отношение полезной энергии Wa при сгорании топлива к полной энергии Wo аккумулированной изначально в массе топлива Полезную энергию Wa определяем через массу mо топлива и его энергоотдачу Qn p (теплоту сгорания) Wa=Qn pmo (1.2) Полную энергию Wo, аккумулированную в топливе, определяем как энергию покоя через массу покоя mо и квадрат скорости света С2 в вакууме (С=3•108 м/с) в соответствии с принципом эквивалентности массы и энергии Wo=moC2 (1.3) Подставляя (2) и (3) в (1) получаем полный КПД реактивного двигателя на химическом топливе, который даже для водородного топлива Qn p=150 МДж/кг представляет собой довольно малую величину Итак, в соответствии с выражением (1,4) в энергию реактивной тяги переходит не более 10-7% от массы химического топлива. По этой причине современный космический корабль представляет в основном емкость для топлива с небольшим полезным грузом, хотя и в состоянии обеспечить вывод груза на околоземную орбиту. Полеты же с экипажам уже Луне представляют собой довольно серьезную проблему и совмещены с высоким риском. Полеты с экипажем к ближайшим планетам (Марсу и Венере) на кораблях с реактивным двигателем даже не планируются. Известен способ создания тяги в вакуумном поле путем воздействия на рабочее тело вращающихся неоднородных электрических и магнитных скрещивающихся полей и полевой двигатель, корпус которого одновременно может являться корпусом для космического корабля (см. Леонов B.C. Теория упругой квантованной среды, ч. 2, Новые источники энергии. Минск.: Полибиг, с.93-104, рис. 22, 24). Недостатками известных способа полевых двигателей являются невозможность создания тяги в связи с отсутствием операций и соответствующих деталей взаимодействия с вакуумным полем системы электрических и магнитных полей. Техническим решением, на достижение которого направлено изобретение, является создания тяги в вакууме за счет взаимодействия с вакуумным полем системы электрических и магнитных полей, реализация которого позволила бы обеспечить создание эффективного полевого двигателя для межпланетного космического корабля нового поколения с одновременным генерированием электрической энергии. Реализация предлагаемого технического решения позволяет обеспечить создание эффективного полевого двигателя для межпланетного космического корабля нового поколения. Указанный технический результат достигается тем, что в способе создания тяги в вакууме путем воздействия на рабочее тело системой вращающихся неоднородных электрических и магнитных скрещивающихся полей задают одновременно электрические и магнитные свойства рабочему телу, вращая которое перераспределяют квантовую плотность среды вакуумного поля внутри рабочего тела в направлении, противоположном вектору силы тяги в результате деформации вакуумного поля, при этом вектор силы тяги расщепляют на нормальный и тангенциальный вектора, нормальный вектор силы направляют на создание силы тяги, а тангенциальный вектор - на создание вращающего момента, обеспечивающего производство электрической энергии для питания системы неоднородных электрических и магнитных скрещивающихся полей и системы их вращения, причем силу тяги задают постоянной величиной на маршруте межпланетного движения и устанавливают из условия эквивалентности создаваемого ускорения, равного ускорению свободного падения на поверхности Земли, периодически меняют направление вектора силы тяги и ускорения на противоположное и обеспечивают движение в режиме разгона и с последующим торможением. Указанный технический результат достигается также тем, что полевой двигатель для космического корабля, содержащий корпус, аккумуляторную батарею, систему управления тягой, магнитную систему и систему разнополярных электродов, содержит электрогенератор, преобразователь напряжения и активаторы вакуумного поля, включающие электродвигатель, ротор, выполненный в виде рабочего тела из диэлектрического и ферромагнитного материала в форме усеченного конуса, основание которого соосно совмещено с ротором электродвигателя, преимущественно гиромотора, магнитную систему и систему разнополярных электродов, которые охватывают с зазором конус рабочего тела, причем полюса магнитной системы повернуты относительно системы разноименных электродов на угол 90o таким образом, чтобы вектора напряженности магнитного и электрического полей образовали систему скрещивающихся полей, а группа активаторов соединена с осью электрогенератора посредством диска с его торца и снабжена устройством поворота активаторов относительно плоскости диска со средством шарнирного соединения, преобразователь тока аккумуляторной батареи снабжен регулятором частоты трехфазного источника напряжения для питания гиромоторов, а система управления тягой содержит регулятор напряжения магнитной системы и системы разноименных электродов. Указанный технический результат достигается также тем, что полевой двигатель для космического корабля, содержащий корпус, служащий также корпусом космического корабля, аккумуляторную батарею, систему управления тягой, магнитную систему и систему разнополярных электродов, отличается тем, что содержит кольцевые электрогенераторы, преобразователь напряжения и активаторы вакуумного поля, включающие электродвигатель и ротор, выполненный в виде рабочего тела из ферромагнитного диэлектрического материала в форме усеченного конуса, основание которого соосно совмещено с ротором электродвигателя, преимущественно гиромотора, магнитную систему, выполненную в виде многофазной системы магнитных полюсов, и систему разнополярных электродов, выполненную в виде многофазной системы с одинаковым количеством пар магнитных полюсов и пар разнополярных электродов, образующих систему синхронно вращающихся в одном направлении электрических и магнитных полей с пространственным сдвигом на 90o векторов напряженности магнитного и электрического скрещивающихся полей, охватывающую с зазором конус рабочего тела, при этом между магнитными полюсами и системой разнополярных электродов установлен изолятор из диэлектрического материала в форме конуса, кольцевые электрогенераторы установлены в корпусе полевого двигателя по периметру с внутренней стороны на двух уровнях и выполнены с неподвижными статорами и вращающимися в разные стороны роторами, с внутренней стороны роторов установлены активаторы вакуумного поля с наклоном оси к плоскости вращения роторов, причем угол наклона активаторов у одного из роторов противоположен углу наклона активаторов другого ротора, преобразователь напряжения снабжен регулятором частоты трехфазного напряжения для питания гиромоторов, а система управления тягой содержит регулятор напряжения магнитной системы и системы разноименных электродов, при этом активаторы по питанию разбиты на группы для регулирования тяги с любой из сторон космического корабля для осуществления его поворота при маневре.
На
фиг. 1
представлена схема, объясняющая появление силы тяготения, действующей
на пробную массу 2 и обусловленной градиентом квантовой плотности
3 среды (вакуумного поля) в результате сферической деформации
вакуумного поля возмущающей гравитационной массой 1 (чертеж усечен). На фиг. 2 представлена гравитационная диаграмма в виде эпюры распределения квантовой плотности среды и гравитационного потенциала во внешней области 4 (ρ1, C2) и внутри 5 (ρ2, C22) гравитационной границы 6 в результате сферической деформации вакуумного поля возмущающей гравитационной массой при формировании массы из вакуумного поля. На фиг. 3 показано классическое распределение ньютоновского потенциала в вакууме. На фиг. 4 показана потенциальная гравитационная яма, полученная во внешней области 4 вакуумного поля в результате его возмущения массой 1, наличие которой объясняет природу тяготения массы 2 к массе 1 в результате падения массы 2 на дно потенциальной гравитационной ямы. На фиг. 5 показано градиентное распределение квантовой плотности среды внутри тела в результате воздействия на тело массой m2 ускоряющей силы Fm. На фиг. 6 показано возникновение ускоряющей силы Fm, действующей на тело массой m2 при деформации вакуумного поля внутри тела в направлении силы Fm. На фиг. 7 представлена однородная сетка гравитационного поля внутри тела в отсутствие градиента квантовой плотности среды при равномерном и прямолинейном движении тела в вакуумном поле или его неподвижности. На фиг. 8 представлена неоднородна сетка градиентного вакуумного поля внутри тела в виде силовых линий вектора деформации D2 и эквипотенциалей ньютоновского гравитационного потенциала, приводящих к появлению неуравновешенной ускоряющей силы Fm. На фиг. 9 представлены градиентные зависимости изменения квантовой плотности ρi2 среды внутри тела и величины деформации D2 вакуумного поля, приводящие к появлению неуравновешенной ускоряющей силы Fm. На фиг. 10 представлена структура электрического (магнитного) монополя. На фиг. 11 показано формирование кванта пространства (квантона) из четырех монопольных зарядов с тетраэдрной моделью расположения ядер монополей (вид сверху). На фиг. 12 показано формирование шаровой формы квантона в результате электромагнитного сжатия монополей в квадрупольной конструкции квантона. На фиг. 13 представлена упрощенная схема взаимодействия четырех квантонов, представленная в силовых линиях в локальной области вакуумного поля. На фиг. 14 представлена схема возникновения градиентной силы Fg, действующей на магнитный диполь 13 квантона 12 в неоднородном магнитном поле. На фиг. 15 представлена схема возникновения градиентной силы Fe, действующей на электрический диполь 14 квантона 12 в неоднородном электрическом поле. На фиг. 16 представлено воздействие на рабочее тело 21 неоднородного магнитного поля, создаваемого магнитной системой с катушкой возбуждения. На фиг. 17 представлено воздействие на рабочее тело 21 неоднородного электрического поля создаваемого системой электродов разноименной полярности. На фиг. 18 показано совмещение воздействия магнитного и электрического полей на рабочее тело 21 при условии ортогональности их векторов напряженности. На фиг. 19 представлена схема устройства простейшего полевого двигателя. На фиг. 20 представлена схема полевого двигателя с устройством поворота активаторов. На фиг. 21 представлена схема полевого двигателя с устройством поворота активаторов (в сечении по А-А). На фиг. 22 показан активатор вакуумного поля в разрезе по магнитной системе. На фиг. 23 показан активатор вакуумного поля в разрезе по системе разнополярных электродов (сечение по А-А). На фиг. 24 представлен активатор вакуумного поля в разрезе по магнитной системе и по системе разнополярных электродов (сечение по В-В). На фиг. 25 представлена схема полевого двигателя межпланетного космического корабля в едином совмещенном корпусе (в сечении). На фиг. 26 представлена схема полевого двигателя межпланетного космического корабля в едином совмещенном корпусе (в сечении по А-А). На фиг. 27 показан активатор вакуумного поля с многофазной системой магнитных полюсов и разнополярных электродов (в разрезе). На фиг. 28 показан активатор вакуумного поля с многофазной системой магнитных полюсов и разнополярных электродов (в разрезе по А-А). С целью обоснования предлагаемого способа ниже приводятся необходимые расчеты и поясняющие теоретические выкладки. В основе предлагаемого изобретения лежат физические процессы, происходящие в вакуумном поле и раскрывающие механизмы гравитации и инерции. На фиг. 1 показано, что в поле тяготения Земли 1 с массой m1 другое тело 2 с массой m2 притягивается в соответствии с законом всемирного тяготения Ньютона с силой Fm, направленной к центру земли по радиусу r (1r - единичный вектор в направлении г, позиция 3 - эквипотенциали квантовой плотности вакуумной среды) где =6,67ю10-11Нм2/кг2 - гравитационная постоянная. Закон всемирного тяготения Ньютона (1) базируется на решении классического уравнения Пуассона для гравитационного потенциала ϕ, наличие которого в пространстве создается возмущающей массой, например, Земли m1 с плотностью вещества ρm(кг/м3) (см. Новиков И.Д. Тяготение. Физический энциклопедический словарь. М.: Советская энциклопедия, 1984, с.772-775) [3] Δϕ = 4πGρm (2) где Δ - оператор Лапласа Если плотность вещества ρm сосредоточена в ограниченном объеме, то вне этого объема при условии ρm = 0 уравнение Пуассона (2) переходит в уравнение Лапласа Решением уравнения Пуассона (2) в области, удовлетворяющей условию Лапласа (4), является функция распределения гравитационного потенциала ϕ, определяемая интегралом по объему V Для сферически симметричной системы распределение гравитационного потенциала (5) описывается ньютоновским гравитационным потенциалом ϕn Значение 1/r в (6) представляет собой кривизну гравитационного поля обусловленного искривлением пространства возмущающей массой m1. Наличие кривизны пространства приводит к появлению обобщающей силы, препятствующей искривлению пространства. Но это не отражено в известных решениях уравнения Пуассона (2). Отсутствие силы, препятствующей искривлению пространства, должно было бы привести к неустойчивости пространства, то есть к его коллапсу. Но этого не наблюдается экспериментально. Пространство как носитель гравитационного поля представляет собой очень устойчивую субстанцию. Это возможно только в том случае, если сила, препятствующая искривлению пространства, существует реально. Но наличие такой силы может быть связано только с наличием упругих свойств у пространства, определяемых его реальной структурой, учет которой позволяет ввести в решения уравнения Пуассона вторую компоненту, препятствующую искривлению пространства. Кстати, на наличие данной силы указывал академик Дмитрий Сахаров, подвергая серьезной критике существующие теории гравитации, не только ньютоновскую, но и эйнштейновскую (см. Сахаров А.Д. Вакуумные квантовые флуктуации в искривленном пространстве и теория гравитации. Доклады Академии наук СССР, 1967, том 177, 1, с.70-71) [4]. Действительно, уравнение Пуассона (2) вошло в теорию гравитации из теории упругости при решении стационарных задач в механике сплошных сред. В векторной форме уравнение Пуассона (2) представляет собой дивергенцию градиента гравитационного потенциала, определяя свойства пространства как субстанции, обладающей идеальной упругостью (без трения и пластичности) Но выражение (7) характеризует собой плотность источника гравитационного поля (интенсивность), хотя в теории гравитации напрямую не учитывает самих упругих свойств гравитационного поля как поля силового. Чтобы перейти от абстрактной величине гравитационного потенциала в (7) к реальному гравитационному полю, наделим вакуум упругой структурой, представив что он состоит из мельчайших частиц - квантов пространства, которые обладают свойством притягиваться друг к другу, образуя упругую квантованную среду (УКС). В теории УКС [5] рассматривается методика электромагнитного квантования пространства с дискретностью порядка 10-25 м на микроуровне в рамках неподвижной лоренцевой абсолютно упругой структуры (Леонов B.C. Роль сверхсильных взаимодействий при синтезе элементарных частиц. В книге "Четыре доклада по теории упругой квантованной среды УКС". Отдельное издание по материалам 6-й конференции РАН "Современные проблемы естествознания". - С. -Петербург, 2000, с.3-14.) [5]. Квантованный электромагнитный физический вакуум на макроуровне рассматривается как специфическая сплошная среда, обладающая идеальной (без трения и пластичности) упругостью за счет колоссальных сил внутреннего натяжения собственного статического дискретного электромагнитного поля, исследования которого только начинаются (Дмитриев В.П. Упругая модель физического вакуума. Известия РАН. Механика твердого тела, 1992, 6, с. 66-79. [6]. Смирнов В. И. Экспериментальная проверка гипотезы о существовании статического электромагнитного поля. - Дубна: Объединенный институт ядерных исследований, 1999, препринт Р13-99-7. [7]. Решение стационарных задач деформации в теории упругости и механике сплошных сред определяется классическим уравнением Пуассона (7) и, в данном случае, определяется при замене гравитационного потенциала ϕ на квантовую плотность упругой сплошной среды ρ, которая характеризует количество частиц (квантов пространства) в единице объема среды (частиц/м3). Получаем новое перенормированное уравнение Пуассона, приведенное к квантовой плотности среды как непосредственного параметра упругих свойств упругого вакуума ρm = kodiv grad(ρ) (8) где где 1/ko= 3,3•1049 частиц/кгм2 - постоянная невозмущенного деформацией упругого вакуума; Co 2=8,99•1016 м2/c2 -гравитационный потенциал невозмущенного упругого вакуума; ρo = 3,5510•1075 частиц/м3 - квантовая плотность невозмущенного упругого вакуума [5]. Выражение (8) характеризует состояние деформированного возмущающей гравитационной массой m упругого вакуума, и его решение позволяет найти распределение квантовой плотности вакуумной среды как для внешней области ρ1 деформированного пространства, так и для внутренней ρ2. Для случая сферической деформации вакуума, в результате интегрирования уравнения Пуассона (8), получаем точное решение в виде системы двух уравнений в статике где r - расстояние от центра источника гравитации (r>Rs), м; Rs - радиус источника гравитации (гравитационная граница раздела в среде), м; Rg - гравитационный радиус источника гравитации (без множителя 2), м Для элементарных частиц и не коллапсирующих объектов гравитационный радиус является чисто расчетным параметром. Решение (11) позволяет оценить упругость вакуума, например, по тому как сжимается квантовая плотность среды ρ2 внутри поверхности гравитационной границы раздела Земли, Солнца и черной дыры: для Земли при Rs=6,37•106м, Rg=4,45•10-3м ρ2 = 1,0000000007ρo для Солнца при Rs=6,96•108 м, Rg=1,48•103м ρ2 = 1,000002ρo для черной дыры Rg=Rs; ρ2 = 2ρo Если произойдет коллапс Солнца, то его вещество сожмется в 1,27•1016 раз, в то время как квант пространства сожмется всего в Действительно, речь идет о физическом вакууме как сверхупругой среде, не имеющей аналогов. Учитывая, что квантовая плотность среды как параметр скалярного поля определяет распределение гравитационного потенциала в вакууме, уточняем решение классического уравнения Пуассона (7) для гравитационного потенциала, определив его распределение для внешней ϕ1 и внутренней ϕ2 областей сферически деформированного вакуумаИтак, новые решения (11) и (13) статического уравнения Пуассона для упругого вакуума включают вторую внутреннюю компоненту ρ2 и ϕ2, которая препятствуют искривлению пространства и уравновешивает внешнюю деформацию (искривление) упругого вакуума, обусловленную параметрами ρ1 и ϕ1. Такой подход позволяет исключить коллапс пространства, обеспечив его устойчивость. Действительно, если выделить в упругом вакууме некую сферическую границу и начать ее равномерно сжимать до радиуса Rs вместе со средой, то внутренняя область сжатия увеличит квантовую плотность среды за счет растяжения внешней области, уравновешивая систему. Этот процесс описывается уравнением Пуассона как дивергенция градиента квантовой плотности среды или гравитационного потенциала. Решения уравнений Пуассона (11) и (13) позволяют составить точный баланс квантовой плотности среды и гравитационных потенциалов для внешней области деформированного вакуума при ρ1 = ρ и ϕ1 = C21 = C2 ρo = ρ+ρn (14) C2o = C2+ϕn (15) где ρn - изменение квантовой плотности среды под действием ньютоновского потенциала ϕn; ϕn - ньютоновский гравитационный потенциал (6), м2/с2; С2 - гравитационный потенциал возмущенного гравитацией вакуумного поля, м2/с2. Итак, новые решения уравнения Пуассона вместо одного ньютоновского потенциала ϕn дают дополнительно еще три гравитационных потенциала Сo 2, ϕ1 = C2 и ϕ2, действующих в деформированном вакуумном поле. Это значительно расширяет возможности теории гравитации и упрощает математические расчеты, делая основной упор на реальные физические модели, объясняющие природу гравитации. На фиг. 2 представлена гравитационная диаграмма в виде эпюры распределения квантовой плотности среды и гравитационных потенциалов в соответствии с (13) и (11). Как видно, решение уравнения Пуассона для упругого вакуума определяет его сферическую деформацию. Внутри (позиция 5) гравитационной границы Rs (позиция 6) раздела наблюдается сжатие квантовой плотности среды ρ2 и увеличение гравитационного потенциала ϕ2 = C22. Вне (позиция 4) гравитационной границы 6 раздела наблюдается уменьшение квантовой плотности среды ρ1 и гравитационного потенциала ϕ1 = C2 по мере приближения к гравитационной границе 6. На самой гравитационной границе раздела r=Rs, наблюдается скачок квантовой плотности Δρ среды и гравитационного потенциала Δϕ, образуя в среде гравитационную яму Δρ = 2ρns Δϕ = 2ϕns (16) где ϕns - ньютоновский гравитационный потенциал на гравитационной границе раздела Rs, обусловленный квантовой плотностью среды ρns на гравитационной границе, м2/с2. Ньютоновский гравитационный потенциал на гравитационной диаграмме (фиг. 2) представлен как потенциал мнимый. Вместо гравитационного потенциала на самом деле в вакуумном поле действует гравитационный потенциал С2. По сути дела замена ньютоновского потенциала на гравитационный потенциал действия С2 представляет собой метод перенормировки гравитационных потенциалов, приводящий к эквивалентности энергий гравитационного и электрического (электромагнитного) полей при неизменном характере гравитационных сил. Действительно, из (15) запишем значение гравитационного потенциала действия С2 в вакуумном поле C2 = C2o-ϕn (17) Внесем в гравитационное поле, определяемое (17), пробную массу m2 и определим силу Fm тяготения между m2 и m1, которая создает потенциал (17), с учетом, что C2 2=const Как видно из (18) закон всемирного тяготения с учетом перенормировки гравитационных потенциалов не изменяет своей величины и полученный результат полностью совпадает с известным выражением Ньютона (1). Однако распределение ньютоновского потенциала (фиг. 3) в известном законе (1) отлично от распределения гравитационных потенциалов (фиг. 2) в теории УКС. Чтобы понять сущность предлагаемого изобретения необходимо уяснить причины тяготения, определяемые выражением (18). С этой целью представим гравитационную диаграмму только в виде гравитационной потенциальной ямы в вакуумном поле, создаваемой возмущающей массой m1 (позиция 1), а внутри гравитационной ямы находится пробная масса m2 (позиция 2) (фиг.4). Как видно, пробная масса 2, находясь внутри гравитационной потенциальной ямы, стремится "упасть" на дно потенциальной ямы под действием сил тяготения. Только на дне потенциальной ямы система принимает устойчивое состояние, связанное с действием гравитации как сил притяжения. Возвращаясь к распределению ньютоновского потенциала на фиг.3, как трактует его механика, нетрудно заметить отсутствие там потенциальной ямы. Наличие гравитационной потенциальной ямы в вакуумном поле объясняет только внешнюю сторону механизма тяготения, не раскрывая более глубоких его причин. Чтобы проникнуть в суть проблемы перейдем от рассмотрения распределения гравитационного потенциала в вакуумном поле к анализу распределения квантовой плотности среды (11) (фиг. 2). Во внешней области пространства квантовая плотность среды уменьшается по мере приближения к гравитационной границе раздела. Это уменьшение представлено в виде эквипотенциалей 3 квантовой плотности среды на фиг.1. Как видно эквипотенциали сгущаются при удалении от гравитационной границы раздела (в данном случае роль гравитационной границы выполняет поверхность Земли 1). Далее рассмотрим распределение квантовой плотности среды как поля земного тяготения внутри пробной массы 2 (фиг.1). Эквипотенциали квантовой плотности среды гравитационного поля Земли пронизывают тело пробной массы 2, формируя в нем градиент квантовой плотности среды. То есть внутри тела пробной массы 2 квантовая плотность среды распределена неравномерно. И именно эта неравномерность определяет природу тяготения как давление упругой квантованной среды (вакуумного поля) на пробное тело 2. При этом сила Fm тяготения направлена из области с большей квантовой плотностью среды в область меньшей квантовой плотности, то есть на дно гравитационной ямы. Математически это выражается путем замены гравитационного потенциала действия 2 (18) на квантовую плотность среды ρ1 = ρ Из (19) видно, что замена гравитационного потенциала квантовой плотностью среду не изменяет самого закона всемирного тяготения. С другой стороны, градиент квантовой плотности среды представляет собой вектор деформации D вакуумного поля здесь D = grad(ρ) (21) Таким образом, для того чтобы вызвать направленную силу в вакуумном поле необходимо произвести его деформацию в направлении силы. Для этого необязательно производить деформацию вакуумного поля полем тяготения Земли. Если квантовая плотность среды описывает потенциальное гравитационное поле подобно гравитационному потенциалу, то вектор деформации D вакуумного поля является аналогом вектора ускорения а откуда Если из поля тяготения Земли 1 (фиг. 1) вынести на отдельную фиг. 5 пробную массу 2, оставив эквипотенциали 3 квантовой плотности среды вакуумного поля внутри гравитационной границы раздела, а соответственно и деформацию D2 (фиг. 6), то пробная масса будет испытывать воздействие силы Fm несмотря на то, что исходное вакуумное поле не деформировано. Как видно из фиг.5 тело с пробной массой m2 при воздействии силы Fm в направлении х испытывает ускорение а (23), которое ведет к перераспределению квантовой плотности среды внутри гравитационной границы раздела Rs. Разместим начало координат в точке 0, видно, что внутри тела в направлении r квантовая плотность среды увеличивается от ρ12 до ρ22, формируя внутри тела градиент квантовой плотности среды (21), определяющий направление и величину вектора деформации D2 вакуумного поля внутри гравитационной границы D2 = grad(ρ2) (24) Таким образом, чтобы искусственно вызвать силу Fm, действующую на тело и производящую его самопроизвольное ускорение, необходимо внутри тела произвести перераспределение квантовой плотности среды в направлении, противоположном вектору деформации вакуумного поля. Это является первым необходимым действием, обеспечивающим работоспособность предлагаемого способа. Пока, перераспределение квантовой плотности среды в направлении, противоположном вектору деформации вакуумного поля, наблюдается в поле тяготения, например Земли, и при ускорении тела. Для создания ускорения тела в вакууме пока имеется всего лишь один способ, связанный с реактивным движением, действие которого, в конечном итоге, направлено на перераспределение квантовой плотности среды в направлении, противоположном вектору деформации вакуумного поля.Чтобы полностью отказаться от реактивного движения в космосе, необходимо технически решить проблему перераспределение квантовой плотности среды внутри тела другим способом, отличным от реактивного. В соответствии с принципом эквивалентности тяготения и инерции, сформулированным еще Эйнштейном, применим зависимости, описывающие поле тяготения в виде распределения квантовой плотности ρ1 среды (11) в направлении г для описания распределения квантовой плотности ρi2 среды внутри тела при воздействии инерции, приравняв ρi2 = ρ1 (индекс i от слова инерция указывает на то, что ρi2 по своей природе отлична от ρ2, описывающей квантовую плотность среду внутри гравитационной границы в (11) в результате сферической деформации вакуумного поля при формировании массы частицы и тела)Подставляя (25) в (24) получаем функции вектора деформации 2 внутри тела, испытывающего ускорение Знак минус в (26) указывает на то, что вектор деформации D2 направлен в противоположную сторону от направления единичного вектора 1r (фиг.6). Гравитационный радиус Rg (12) в (25) и (26) представляет собой своеобразную меру инертности, характеризующую вектор деформации D2, и легко может быть преобразован в напряженность (ускорение а) гравитационного поля, обусловленного инерцией внутри тела Подставляя (27) в (26) получаем значение вектора деформации D2 вакуумного поля внутри ускоряемого тела в результате искусственного перераспределения квантовой плотности среды Как видно (28) согласуется с (23). Естественно, что в (27) гравитационный радиус представляет уже собой вектор, как и ускорение а в (28). Таким образом, если внутри тела вызвать искусственно появление вектора деформации D2 вакуумного поля, то это тело станет ускоряться с ускорением а в направлении вектора деформации D2. На фиг.7 представлена картина вакуумного поля внутри гравитационной границы раздела среды для тела, неподвижного в вакуумном поле и двигающегося в нем равномерно и прямолинейно. Картина вакуумного поля представлена в виде потенциальной сетки, в узлах которой расположены равновеликие гравитационные потенциалы или значения квантовой плотности среды. Как видно, такое гравитационное поле не имеет градиентов квантовой плотности среды, а соответственно не деформировано. В таком поле все силы уравновешены натяжениями гравитационной границы раздела. На фиг. 8 представлена картина гравитационного поля внутри тела, когда исходное вакуумное поле деформировано и представлено в виде силовых линий вектора деформации D2. Силовые линии сгущаются к точке 0, определяя неоднородность гравитационного поля. Поперечные эквипотенциали отражают характер ньютоновских потенциалов. В результате формируется сетка деформированного поля с явно выраженной неоднородностью, обусловленная градиентами квантовой плотности среды. В итоге, тело с деформированным внутреннем полем создает неуравновешенную силу Fm, способную ускорять тело в пространстве. Внутри тела наблюдается увеличение деформации 7 (D2) вакуумного поля в сторону начала координат 0 за счет ослабления квантовой плотности среды, поскольку деформация проявляется как градиент квантовой плотности 8 среды (фиг.9). Таким образом, чтобы искусственно создать неуравновешенную силу в вакууме, действующую на тело и производящую тягу, необходимо внутри тела создать условия, приводящие к направленной деформации вакуумного поля в результате градиентного перераспределения квантовой плотности среды. Для этого необходимо раскрыть структуру самого вакуумного пространства, в том числе, внутри гравитационной границы раздела. Представленные выше расчеты убедительно доказывают, что вакуумное пространство обладает упругой структурой и должно состоять из большого количества мельчайших частиц - квантов пространства (квантонов), неделимых далее. Чтобы раскрыть структуру элементарного кванта пространства воспользуемся уравнениями Максвелла для вакуума, записав плотность токов электрического je и магнитного jm смещения при поляризации вакуумного поля электромагнитной волной через изменение во времени t напряженности электрического Е и магнитного Н полей [5] где εo = 8,85•10-12Ф/м - электрическая постоянная; μo = 1,26•10-6Гн/м - магнитная постоянная. Ввиду симметричности электромагнитной волны плотности токов электрического и магнитного смещения в вакууме по абсолютной величине (модулю) эквивалентны друг другу Jm=CoJe (31) В (31) плотности токов смещения связаны между собой множителем, равным скорости света Со для невозмущенного гравитацией вакуумного поля, или С - для возмущенного гравитацией. Это обусловлено тем, что размерности плотности токов смещения для электрической и магнитной компонент различны в системе СИ. Действительно, выразить плотности токов смещения можно через скорость смещения v безмассовых элементарных электрического е и магнитного g зарядов и квантовую плотность среды ρo, пологая, что заряды е и g входят в состав квантона парами со знаком (+) и (-), образуя в целом нейтральную частицу je = 2eρov (32) jm = 2gρov (33) Подставляя (32) и (33) в (31) получаем соотношение между элементарным электрическим и магнитным зарядами g=Coe=4,8•10-11 Ам (или Дк) (34) Итак, в системе СИ элементарный магнитный заряд (34) имеет величину 4,8•10-11 Ам и размерность, выраженную в Дираках (Дк). Таким образом, анализ уравнений Максвелла показывает, что условием поляризации вакуума электромагнитной волной является наличие токов электрического и магнитного смещения безмассовых электрических и магнитных зарядов, входящих в состав квантона. При этом сам квантон как элементарный квант пространства должен включать в себя четыре элементарных заряда: два электрических (+1е и -1е) и два магнитных (+1g и -1g), представляя собой статический электромагнитный квадруполь, практически не изученный в электродинамике. В дальнейшем будем называть безмассовые элементарные заряды монополями (электрическими и магнитными). Чтобы выделить в пространстве элементарный объем необходимо с позиций геометрической минимизации всего четыре разметочных точки. Одна точка - просто точка, две точки позволяют выделить линию, три - поверхность, четыре - объем. И эти четыре точки запланировала сама природа в виде указанных четырех монополей, образуя структуру квантона. В целом квантон представляет собой электрически нейтральную и безмассовую частицу, обладающую электрическим и магнитными свойствами, которые проявляются при поляризации вакуума в электромагнитной волне. К самой структуре квантона мы не можем подходить с мерками известных элементарных частиц, таких как электрон, обладающий массой и одновременно являющийся носителем элементарного электрического заряда. С классических позиций четыре разноименных монополя в квантоне под действием колоссальных сил натяжения должны коллапсировать в точку. Однако этого не наблюдается. Вакуумное пространство представляет собой очень устойчивую субстанцию. Это означает, что монополи, входящие в квантон, имеют конечные размеры, определяя диаметр Lq самого квантона [5] где k3= 1,44 - коэффициент заполнения вакуума квантонами шаровой формы; Rs=0,81•10-15м - радиус протона (нейтрона). Выражение (35) получено из условий натяжения упругого вакуума в результате взаимодействия квантонов между собой при рождении элементарной частицы (протона, нейтрона) из вакуумного поля в результате его сферической деформации. Радиус Rs представляет собой элементарную гравитационную границу раздела в квантованной среде для указанных элементарных частиц. На фиг.10 представлена наиболее вероятная структура электрического и магнитного монополя. По-видимому монополь 9, чтобы удовлетворять условиям упругого состояния вакуумного поля, должен представлять собой двухфазную частицу, состоящую из центрального ядра 10, окруженного упругой атмосферой 11. Именно ядро 10 является источником поля (электрического или магнитного) в виде заряда. Можно предположить, что именно ядро монополя определяется планковской длиной 10-35м, а сам монополь имеет размеры порядка 10-26м [5]. Пока неясна физическая природа самих монопольных зарядов и строение их упругой атмосферы. Упругая атмосфера монополей и сами монополи определяют электрические и магнитные свойства вакуума в виде εo и μo, связывая воедино электрическую и магнитную материю внутри квантона. Тогда на основании физической модели монопольных зарядов можно анализировать процесс формирования квантона, изображенный на фиг.11. Четыре упругих шарика-монополя 9 образуют фигуру с расстановкой своих ядер по вершинам тетраэдра, обеспечивая ортогональность электрической и магнитной осей в целом нейтрального квантона. Но в таком состоянии квантон оставаться не может. Естественно, что колоссальные силы электромагнитного сжатия должны деформировать квадруполь из монополей в шаровую частицу 12, изображенную на фиг. 12, сохраняя ее целостность как единой частицы и сохраняя ортогональность электрической и магнитной осей. В этом случае ядра монополей шарового квантона также расположены по вершинам тетраэдра, встроенного внутри квантона, обеспечивая электромагнитную симметрию системы. При этом эквивалентное действие электрического и магнитного полей внутри квантона определяется равенством сил Кулона для электрических Fe и магнитных Fg зарядов, действующих на расстоянии г, равном ребру тетраэдра Из (36) получаем соотношение Учитывая, что в СИ εoμoC2o = 1, из (37) получаем соотношение между магнитным и электрическим элементарными зарядами g=Сoе, соответствующее (34), но полученное иным способом. При этом природа скорости света устанавливается реальным квантованием вакуумного пространства электрическими и магнитными монополями, входящими в состав квантонов Сам процесс электромагнитного квантования большого объема пространства, связан с его заполнением квантонами 12. В силу естественной способности к сцеплению противоположных по знаку зарядов, квантоны сцепляясь друг с другом, образуют квантованную упругую среду. Тетраэдрная форма расстановки ядер монополей в квантонах вносит элемент хаотичности в сцепления квантонов, делая случайным образом ориентацию их электрических и магнитных осей в пространстве и, исключая при этом какое-либо приоритетное направление ориентации. В целом создается электрически и магнитно нейтральная однородная и изотропная среда, обладающая электрическим и магнитными свойствами, получившая название как вакуумное поле в виде статического электромагнитного поля. Естественно, что представить структуру дискретного электрического и магнитного поля квантованной среды в проекции на плоскость не представляется возможным. Упрощенная модель плоского локального участка вакуумного поля для четырех квантонов 12 представлена на фиг.13 в проекции на плоскость в виде силовых линий электрического и магнитного полей. Вакуумное поле можно рассматривать в виде дискретной сетки с дискретностью порядка 10-26 м из силовых линий статического электрического и магнитного полей, наброшенной на всю Вселенную и связывающую воедино все объекты. Мы живем в электромагнитной Вселенной. Естественно, что ввиду малых размеров действие электродинамических сил внутри квантона между монопольными зарядами настолько велико, что в природе отсутствуют силы, способные расщепить квантон на отдельные монополи. Экспериментально это подтверждается по отсутствию в природе свободных магнитных зарядов несмотря на многочисленные их поиски. Некоторый избыток электрических зарядов обусловлен электрической асимметрией Вселенной. Но именно избыток электрических зарядов является источником рождения из вакуума элементарных частиц и вещественной материи [5]. Итак, анализ электромагнитной структуры вакуумного поля как упругой дискретной субстанции, обусловленной электрическими и магнитными натяжениями между квантонами (квантами пространства), показывает, что воздействуя на вакуумное поле внешними электрическими и магнитными полями, его можно искусственно деформировать в нужном направлении, создавая неуравновешенную силу тяги в соответствии с поставленной в предлагаемом изобретении задачей. С другой стороны, возвращаясь в гравитационной диаграмме фиг.2 становится понятной структура гравитационной диаграммы как области сферически деформированного статического электромагнитного вакуумного поля под действием натяжений гравитационной границы раздела, строение которой для электрона (позитрона) и нуклонов описано в [5]. С некоторыми оговорками гравитационную границу Rs раздела как расчетный параметр можно принять при описании гравитационного поля пробного тела с массой m2. Тогда абстрагируясь от того, что пробное тело состоит из атомов и молекул, перейдем к тому, что в конечном итоге, с позиций гравитации, пробное тело можно рассматривать так, что внутри гравитационной границы пробное тело состоит из квантонов, концентрация (квантовая плотность) которых превышает их же концентрацию с внешней стороны в соответствии с (11), испытывая на границе раздела скачок квантовой плотности (16). Чтобы произвести перераспределение квантовой плотности среды внутри пробного тела необходимо вызвать градиентные силы, способные сместить квантоны внутри гравитационной границы в одном направлении, обеспечив градиент квантовой плотности среды внутри тела. Представленная на фиг.12 схема квантона 12 позволяет рассматривать его как два диполя: магнитного 13 и электрического 14, обладающие дипольными моментами pg и pе соответственно, магнитная и электрические оси которых ортогональны друг другу (фиг.11). Если поместить магнитный диполь в неоднородное магнитное поле напряженностью Н, то возникает градиентная магнитная сила Fg, направленная в область наибольшей напряженности магнитного поля, так же как если поместить электрический диполь в неоднородное электрическое поле напряженностью Е, то возникает градиентная электрическая сила Fe, направленная в область наибольшей напряженности электрического поля (см. Тамм И.Е. Основы теории электричества. Издание десятое. М.: Наука, 1989, с.241, 118) [8] Fg = pggrad(μoH)+pgrot(μoHi) (39) Fe=pegrad(E)+perot(Ei) (40) В выражения (39) и (40) входят также напряженности магнитного Нi и электрического Еi полей индуцированные вихревым характером полей при вращении векторов Н и Е. В целом, выражения (39) и (40) определяют величину и направление градиентных сил Fg и Fe в виде скалярного произведения входящих векторов. Как видно градиенты напряженности электрического и магнитного полей должны совпадать с направлением силы тяги. При отсутствии переменного характера полей в результате их вращения исчезают компоненты с роторами в (39) и (49), определяя чисто статический характер дипольного взаимодействия в градиентном неоднородном поле. На фиг. 14 представлена схема возникновения градиентной силы Fg, действующей на магнитный диполь 13 квантона 12 в неоднородном магнитном поле магнитной системы 15, полюса которой 16 (+N) и 17 (-S) установлены под углом друг к другу. Магнитный диполь 13 ориентирован вдоль силовой линии неоднородного магнитного поля и испытывает воздействие сил g + и Fg - на магнитные заряды внутри квантона 12 со стороны магнитных полюсов 16 (+N) и 17 (-S) системы 15. Градиентная сила Fg является результирующей сил Fg + и Fg -. На фиг.15 представлена схема возникновения градиентной силы Fe, действующей на электрический диполь 14 квантона 12 в неоднородном электрическом поле системы электродов 18 разноименной полярности 19 (+) и 20 (-) установленных под углом друг к другу. Электрический диполь 14 ориентирован вдоль силовой линии неоднородного электрического поля и испытывает воздействие сил Fg + и Fg - на электрические заряды внутри квантона 12 со стороны электродов 19 (+) и 20 (-) системы 18. Градиентная сила Fe является результирующей сил Fg + и Fg -. Естественно, что на представленных схемах фиг.14 и фиг.15 квантон увеличен до размеров, чтобы можно было разглядеть взаимодействие зарядов квантона с внешними магнитными и электрическими полями. На самом деле размеры квантона очень малы (35) и составляют порядка 10-25м. В реальном теле количество квантонов очень велико, и действие неоднородного поля приводит к смещению квантонов в область наибольшей напряженности поля, осуществляя перераспределение квантовой плотности среды. Поэтому в предлагаемом способе создания тяги в вакууме помимо необходимости произведения перераспределения квантовой плотности среды внутри рабочего тела в направлении, противоположном вектору деформации вакуумного поля, предусматривается, что само перераспределение квантовой плотности среды осуществляют одновременным воздействием на рабочее тело неоднородных электрических и магнитных скрещивающихся полей. На фиг.16 рабочее тело 21 находится в неоднородном магнитном поле, создаваемом магнитной системой 15 с катушкой возбуждения 22 и полюсами 16 и 17. Форма рабочего тела 21 соответствует магнитной системе 15 с минимальным воздушным зазором. Силовые линии напряженности градиентного магнитного поля магнитной системы 15 сконцентрированы в области наибольшей напряженности, определяя магнитный поток Ψg, пронизывающий рабочее тело 21 на любом участке, сечением S участка и напряженностью магнитного поля Н Концентрация потока в области максимальной напряженности магнитного поля обусловлена неоднородностью магнитного поля, обеспечивая градиентное воздействие на квантоны внутри рабочего тела 21. Градиентные силы, воздействующие на квантоны (обозначены точками), направлены по стрелкам в область наибольшей напряженности магнитного поля и концентрации потока, обеспечивая перераспределение квантовой плотности среды внутри рабочего тела 21. При этом кантоны смещаются в область увеличивающейся концентрации потока, создавая вектор деформации вакуумного поля внутри рабочего тела в направлении, противоположном смещению квантонов (направлению, противоположному концентрации магнитного потока). На фиг. 17 рабочее тело 21 находится в неоднородном электрическом поле, создаваемом системой электродов 18 разноименной полярности 19 (+) и 20 (-), установленных под углом друг к другу с минимальным воздушным зазором. Форма рабочего тела 21 соответствует системе электродов 18. Крепление электродов 19 и 20 производится с помощью изолятора 24. Силовые линии напряженности градиентного электрического поля системы электродов 18 сконцентрированы в области наибольшей напряженности, определяя электрический поток Ψe, пронизывающий рабочее тело 21 на любом участке, сечением S участка и напряженностью электрического поля Е Концентрация потока в области максимальной напряженности электрического поля обусловлена неоднородностью электрического поля, обеспечивая градиентное воздействие на квантоны внутри рабочего тела 21. Градиентные силы, воздействующие на квантоны (обозначены точками), направлены по стрелкам в область наибольшей напряженности электрического поля и концентрации потока, обеспечивая перераспределение квантовой плотности среды внутри рабочего тела 21. При этом кантоны смещаются в область увеличивающейся концентрации потока, создавая вектор деформации вакуумного поля внутри рабочего тела в направлении, противоположном смещению квантонов (направлению, противоположному концентрации магнитного потока). Далее требуется объединение действий градиентных магнитных и электрических полей на рабочее тело. Простое совмещение фиг.16 и фиг.17 не даст ожидаемого результата, поскольку электрические оси квантонов ортогональны друг другу. Поэтому магнитное и электрическое поле в пространстве необходимо разнести так, что бы их вектора напряженности также были бы ортогональны друг другу. На фиг. 18 показано совмещение воздействия магнитного и электрического полей на рабочее тело 21 при условии ортогональности векторов напряженности E⊥H. Для этого рассмотрим сечение фиг. 16 и фиг.17 и повернем систему электродов 18 в пространстве на 90o. В итоге получаем, что магнитные полюса 16 и 17 создают магнитное поле, главный вектор напряженности Н которого ортогонален главному вектору напряженности Е электрического поля, создаваемого электродами 19 и 20, образуя систему скрещивающихся полей. Поскольку электроды 19 и 20 находятся под высоким электрическим напряжением, то они снабжены градиентными электродами 24, устраняющими концентрацию напряженности электрического поля на электродах с острыми кромками. Под главными векторами напряженности полей понимаются вектора, силовая линия которых направлена между полюсами и электродами по кратчайшему расстоянию. Выделение главного вектора обусловлено тем, что неоднородное поле характеризуется сложной сеткой из силовых линий, и вектора напряженности магнитного и электрического полей точно ортогональны только для главных векторов. Но для того, чтобы эффективно работал предлагаемый способ создания тяги в вакууме, перечисленных действий с полями оказывается недостаточно. Необходимо обеспечить вращение полей таким образом, чтобы главные вектора напряженности магнитного и электрического полей оставались ортогональными друг другу. Для этого предлагается обеспечить вращение самого рабочего тела 21 относительно оси 23, направленной по вектору деформации D2 вакуумного поля (фиг. 8, 16, 17, 18). При этом возникают дополнительные силы, определяемые роторами магнитного и электрического полей (39) и (40), обеспечивающие усиление воздействия полей и увеличение вектора деформации D2 и силы тяги Fт (фиг.16 и 17). Поскольку механическая частота вращения рабочего тела ограничена его прочностью, увеличить частоту вращения векторов магнитного и электрического полей, а соответственно и эффективность взаимодействия, предлагается за счет выполнения магнитной системы и системы электродов многофазными (от двух фаз и более), сохраняя ортогональность векторов Н и Е. Многофазные системы позволяют обеспечить вращение векторов электрического и магнитного полей внутри тела независимо от его механического вращения. Естественно, что работоспособность предлагаемого способа может быть обеспечена только при наличии у рабочего тела одновременно магнитных и диэлектрических свойств. В качестве примера, реализующего предлагаемый способ создания тяги в вакууме, на фиг.19 представлена схема устройства полевого двигателя, обеспечивающего не только создание тяги, но и подпитку энергообеспечения за счет колоссальной энергии, изначально аккумулированной в вакуумном поле. Устройство включает активаторы 25 вакуумного поля, кронштейны 26 и электрогенератор 27. Нетрудно посчитать, что при размерах квантона (фиг.12) порядка 10-25м энергия связи между монопольными зарядами внутри квантона составляет порядка 10-2Дж. Учитывая концентрацию квантонов порядка 1075частиц/м3, получаем энергоемкость вакуумного поля 1073Дж/м3. Этого достаточно при активизации данной энергии чтобы получить еще один большой взрыв, в результате которого может родиться еще одна вселенная. По сути дела, вакуумное поле является единственным источником энергии во вселенной, различны лишь способы извлечения (активации) этой энергии: химические, ядерные, термоядерные и др. В данном случае рассматривается способ создания тяги в вакуумном поле с одновременным извлечением из него электрической энергии в результате того, что вектор силы тяги, создаваемой рабочим телом, расщепляют на нормальный и тангенциальный вектора, который в свою очередь направляют на создание вращающегося момента, обеспечивающего производство электрической энергии для питания системы. Назовем систему магнитных и электрических полей с рабочим телам единым термином - активатор вакуумного поля, или сокращенно активатор 25. В устройстве на фиг.19 активаторы 25 расположены на кронштейнах 26, которые установлены на валу электрогенератора 27. На фиг.19 не показан электропривод рабочего тела активатора 25, который осуществляется с помощью встроенного гиромотора. Активаторы 25 установлены осью в направлении создания силы тяги Fт под углом к плоскости вращения кронштейнов 26, расщепляя силу тяги Fт на нормальную Fy и тангенциальную Fx составляющие (вид А). По действием тангенциальной составляющей Fx создается вращающий момент, который, воздействуя на кронштейны 26, установленные на валу электрогенератора 27, приводят во вращение ротор электрогенератора 27. Вырабатываемая энергия идет на подпитывание активаторов 25, создавая магнитные и электрические поля и вращение рабочего тела активатора. Экспериментальная проверка предлагаемого способа полностью подтвердила его работоспособность на примере работы полевого двигателя фиг.19. Для пуска полевого двигателя требуется дополнительный источник электрической энергии (электрическая сеть, аккумуляторная батарея). Работает полевой двигатель следующим образом. От источника электрической энергии питается электрогенератор 27 в режиме двигателя и активатор 25. При раскрутке системы до определенной критической скорости в данном случае до 1500 об/мин полевой двигатель входит в двигательный режим. При этом электрогенератор 27 обеспечивает подпитывание активаторов 25 энергией. Тяга, развиваемая полевым двигателем, превосходит вес системы в целом и зависит от конструктивных параметров полевого двигателя, что делает возможным использование предлагаемого полевого двигателя в космических межпланетных кораблях нового поколения. Ниже представлены расчеты полевого двигателя по тяге, мощности и энергии. 1. Запишем основное балансное уравнение для
полевого двигателя при движении космического корабля в вакууме 2. С учетом
(28) выразим деформацию D2 вакуумного поля в (43) через эквивалентную
величину ускорения а2, действующего на рабочее тело активатора
в результате деформации вакуумного поля 3. Далее из (44) рассчитаем параметры рабочего тела активатора для полевого
двигателя межпланетного космического корабля массой m1=100т=105кг,
двигающегося с ускорением, равным ускорению свободного падения
на поверхности Земли a1= gi=9,8м/с2, при условии, что ускорение,
действующее на рабочее тело активатора, достигает значений a2=1000 gi 4. Определяем силу F2
давления (тяги) на ось рабочего тела активатора 5. Определяем суммарную силу Fт тяги полевого двигателя
космического корабля 6. Определяем требуемую
энергию W для движении космического корабля с работающим полевым
двигателем на пути х для равноускоренного движения Как видно из (55) при постоянной тяге полевого двигателя его мощность возрастает с увеличением скорости в вакуумном поле и при скорости 30 км/с составит P=Fтv=106•3•104=30 ГВт (56) Выражение (56) также отражает особенности взаимодействия уже всего вещества космического корабля с энергоемким вакуумным полем, а не только работающего полевого двигателя. 8. Время полета до Марса космического корабля с полевым двигателем при условии
его непрерывного разгона на половине пути и торможения на второй
половине пути, составит: 9. Максимальная скорость корабля на пути к
Марсу составит: Таким образом, проведенные расчеты показывают, что реализация предлагаемого изобретения позволит осуществить разработку нового поколения космических кораблей с полевыми двигателями, способными совершать межпланетные перелеты за несоизмеримо малое время по сравнению с реактивными аппаратами, когда сама сила тяги задается постоянной величиной на маршруте межпланетного движения и устанавливается из условия эквивалентности создаваемого ускорения равного ускорению свободного падения на поверхности Земли, периодически меняя направление вектора силы тяги и ускорения на противоположное и обеспечивая движение в режиме разгона и с последующим торможением. Ниже рассматриваются конкретные варианты конструкции полевых двигателей, реализующих предлагаемый способ создания тяги в вакууме. По первому варианту
полевой двигатель для космического корабля предназначен для создания
тяги в вакууме с помощью системы неоднородных вращающихся электрических
и магнитных полей. Полевой двигатель (фиг.20, 21) включает: корпус
28, электрогенератор 27 на валу 29 которого установлен диск 30,
активаторы 25, закрепленные на шарнирах 31 с торца диска 30,
систему поворота 32 активаторов 25, схему управления, аккумуляторную
батарею и преобразователь напряжения (не показаны). Система поворота
32 активаторов 25 состоит из второго диска 33, гидропривода 34
и упорного подшипника 35. Система поворота 32 может быть выполнена
любой другой из известных в механике. Конец вала 29 закреплен
в корпусе 28 упорным подшипником 36 (или радиально-упорным). Работает полевой двигатель следующим образом. От аккумуляторной батареи питается электрогенератор 27 в режиме
двигателя и преобразователь напряжения, который выдает три типа
напряжений: для питания катушек 44 магнитной системы 43, высокого
напряжения для питания системы электродов 45, и переменного напряжения
повышенной частоты для питания электродвигателя 40. По второму варианту полевой двигатель для космического корабля также предназначен для создания тяги в вакууме с помощью системы неоднородных вращающихся электрических и магнитных полей. Существенное отличие полевого двигателя по второму варианту от двигателя по первому варианту заключается в том, что по второму варианту вращение электрических и магнитных полей в активаторе производится за счет многофазных систем питания. Это позволяет увеличить частоту вращения полей и, тем самым, увеличить энергетические показатели двигателя. Кроме того, отлична компоновка данного полевого двигателя и его энергетическое обеспечение. Данный тип двигателя предназначен для установки на крупных межпланетных кораблях. Полевой двигатель (фиг.25, 26) включает: корпус 49, кольцевой электрогенератор 50, активаторы 51, схему управления, аккумуляторную батарею и преобразователь напряжения (не показаны). Корпус 49 полевого двигателя одновременно является корпусом космического корабля, для усиления жесткости которого служат стойки 52.Кольцевой электрогенератор 50 конструктивно также усиливает жесткость корпуса 49 и выполнен в виде кольца, установленного по периметру корпуса 49, а внутри кольца образуется свободное пространство для размещения оборудования и экипажа. Кольцевой электрогенератор 50 состоит из неподвижного статора 53 и подвижного ротора 54. Кольцевой электрогенератор 50 ввиду большого радиуса выполнен по схеме линейной электромашины со сверхпроводящими обмотками и в данном изобретении не рассматривается конструкция самого электрогенератора. В корпусе 49 установлены два кольцевых электрогенератора 50 и 55 идентичных друг другу, роторы которых 54 и 56 (не виден) вращаются в различные стороны. Это позволяет устранить действие вращающего момента на корпус 49 корабля и полностью компенсировать действие гироскопического момента, мешающего управлению кораблем при его маневре. Активаторы 51 установлены с внутренней стороны роторов 54 и 56. Активаторы снабжены системой их поворота (не показана) для создания тангенциальной тяги, обеспечивающей вращение роторов электрогенераторов в противоположных направлениях. Активатор 51 (фиг.27, 28) вакуумного поля (в дальнейшем активатор) включает: корпус 57, рабочее тело 21 с валом 38 и подшипниками 39, электродвигатель 40 состоящий из ротора 41 и статора 42, магнитную систему 58 с катушками 59, систему электродов 60. Магнитная система 58 и система электродов 60 разделены изолятором 61. Рабочее тело 21 выполнено из ферромагнитного диэлектрического материала в виде тела вращения в форме усеченного конуса, основание которого соосно совмещено с ротором 41 электродвигателя 40. Со стороны конуса рабочего тела 21 с зазором установлена магнитная система 58 и система электродов 60, охватывающие конус рабочего тела. В качестве электродвигателя 40 использован гиромотор с внешним шихтованным ротором 41 с короткозамкнутой обмоткой 47, неподвижным шихтованным статором 42 и трехфазной обмоткой 49, питаемой от преобразователя напряжения повышенной частоты. В качестве электродвигателя 40 может быть использован любой подходящий тип электродвигателя. Магнитная система 58 выполнена многофазной, и в данном случае рассматривается ее двухфазный вариант, включающий две пары полюсов 61, 62 и 63, 64, установленных со смещением в пространстве на 90o относительно друг друга. Магнитное поле полюса 61 возбуждается обмоткой 65, охватывающей данный полюс, полюса 62 - обмоткой 66, полюса 63 - обмоткой 67, полюса 64 - обмоткой 68. Обмотки 65 и 66 первой пары полюсов 61 и 62 соединены электрически параллельно и подключены к первой фазе источника переменного двухфазного тока через шины 69 и 70. Обмотки 67 и 68 второй пары полюсов 63 и 64 соединены электрически параллельно и подключены ко второй фазе источника переменного двухфазного тока через шины 71 и 72. Фазовый сдвиг между фазами напряжений двухфазного источника питания составляет 90o. Данная магнитная система обеспечивает вращение вектора напряженности магнитного поля Н, пронизывающего рабочее тело 21. Система электродов 60 также содержит две пары разнополярных электродов 73, 74 и 75, 76 установленных со смещением в пространстве на 90o относительно друг друга. Первая пара электродов 73, 74 установлена на магнитных полюсах 61-62 через изолятор 60. Если обмотки 65 и 66 пары магнитных полюсов 61, 62 подсоединены к первой фазе (шины 69, 70) источника питания, то электроды 73, 74 подсоединены ко второй фазе (шины 71, 72) источника питания. Это обеспечивает сдвиг по фазе напряжения питания электродов 73, 74 на 90o относительно напряжения питания обмоток 65, 66 пары полюсов 61, 62. Вторая пара электродов 75, 76 установлена на магнитных полюсах 63, 64 через изолятор 60. Если обмотки 67 и 68 пары магнитных полюсов 63, 64 подсоединены ко второй фазе (шины 71, 72) источника питания, то электроды 75, 76 подсоединены к первой фазе (шины 69, 70) источника питания. Это обеспечивает сдвиг по фазе напряжения питания электродов 75, 76 на 90o относительно напряжения питания обмоток 67, 68 пары полюсов 63, 64. В целом данная система питания обеспечивает создание вращающихся электрических и магнитных полей, вектора напряженности которых сдвинуты относительно друг друга на 90o (фиг.28) в соответствии с предлагаемым способом. Кроме того, магнитная система 58 снабжена обмотками возбуждения, установленными ступенчато по высоте магнитной системы. Это позволяет увеличить напряженность магнитного поля на вершине конуса рабочего тела 21 по сравнению с основанием, и тем самым увеличить градиент напряженности магнитного поля, увеличивая силу тяги полевого двигателя (фиг.27). При работе на низких частотах до 20 кГц магнитная система 58 может быть выполнена наборной из листовой электротехнической стали. На более высоких частотах магнитная система 58 выполняется из ферромагнетика. Ступенчатое увеличение напряженности магнитного и электрического полей по высоте позволяет использовать не только рабочее тело в форме конуса, но и в форме цилиндра, или другой конфигурации. Система электродов 59 отделена от магнитной системы 58 изолятором 60, выполненным в виде сплошного конуса, установленного между электродами и полюсами магнитной системы. При этом система электродов 59 встраивается в изолятор 60, обеспечивая крепление электродов. В данном случае при питании системы электродов переменным напряжением электроды полностью могут быть встроены в изолятор 60, обеспечивая высокие показатели электрической прочности в условиях воздействия сильных электрических полей. Для увеличения напряжения питания системы электродов возможно применение повышающих трансформаторов, устанавливаемых между питающими шинами и электродами. Увеличение напряжения на электродах ведет к увеличению напряженности электрического поля возбуждающего активатор, и ограничено электрической прочностью изолятора со встроенными в него электродами. Работает полевой двигатель следующим образом. В системе энергообеспечения предлагаемого полевого двигателя в качестве стартового источника питания предлагается использовать небольшой полевой двигатель, рассмотренный по первому варианту данного изобретения (фиг.20). Запуск стартового полевого двигателя производится от небольшой аккумуляторной батареи, а далее пуск основного полевого двигателя (фиг.26) производится уже от стартового полевого двигателя как первичного источника электрического питания для преобразователя напряжения, который выдает три типа напряжений: двухфазного напряжения переменного тока со сдвигом между фазами 90o для питания обмоток 65, 66 и 67, 68 магнитной системы 58, высокого напряжения для питания системы электродов 59 (электроды 73, 74 и 75, 76) и переменного напряжения повышенной частоты для питания электродвигателя 40 привода рабочего тела 21 активатора 51. Магнитная система 58 и система электродов 59 создают систему вращающихся неоднородных полей. При этом магнитное и электрическое поля вращаются с ортогональным расположением главных векторов напряженности в соответствии с предлагаемым способом. Система вращающихся неоднородных полей воздействует на рабочее тело 21, обеспечивая его магнитную и электрическую поляризацию. Дополнительное воздействие вращающихся магнитного и электрического полей обеспечивается за счет вращения рабочего тела 21 с приводом от электродвигателя 40. В результате внутри рабочего тела происходит перераспределение квантовой плотности среды вакуумного поля и создается неуравновешенная сила тяги, передающаяся активатору 51. От активатора 51 сила тяги передается ротору 54 кольцевого электрогенератора 50 (статор 53 неподвижен). Поскольку активатор 51 установлен под углом осью действия силы тяги к плоскости ротора 54, происходит расщепление силы тяги на тангенциальную и нормальную. Тангенциальная сила создает вращающий момент, действующий на ротор 54. Суммирование вращающих моментов от действия сил всей группы активаторов 51, установленных на роторе 54, приводит во вращение ротор 54 кольцевого электрогенератора 50. Далее система входит в двигательный режим, взаимодействуя с вакуумным полем и, таким образом, извлекая из вакуумного поля энергию, которая идет на поддержания вращения ротора 54 электрогенератора 50 для обеспечения питания электрической системы полевого двигателя и на создание полевой тяги. Аналогичным образом происходит пуск второго кольцевого электрогенератора 55, ротор 56 которого вращается в направлении, противоположном вращению ротора 54, компенсируя таким образом действие вращающего момента корпуса 49 и компенсируя действие гироскопического момента при маневре корабля. Маневр корабля, связанный с изменением направления его движения, обеспечивается усилением или ослаблением силы тяги активаторов с одной стороны, образуя поворотный момент. Для этого активаторы соединены в группы. Необходимо отметить, что движение межпланетного корабля рассчитано с постоянным ускорением, соответствующим ускорению свободного падения на поверхности Земли. В этом случае экипаж космического корабля не будет испытывать воздействия невесомости при полете, находясь в поле, эквивалентном полю тяготения на поверхности Земли. При движении положение корабля в пространстве определяется направлением вектора скорости движения, нормальным к плоскости сечения А-А (фиг.25). Движение с постоянным ускорением существенно сокращает время полета. При экспедиции половину пути корабль проходит с постоянным ускорением, а вторую половину пути проходит с торможением, при этом ускорение и торможение соответствует земному (9,8 м/с2). Время экспедиции до Марса на космическом корабле с полевым двигателем в режиме постоянного ускорения и последующего торможения составит всего 42 часа, то есть около двух земных суток (57). Причем энергия, задействованная из вакуумного поля на ускорение корабля, возвращается вакуумному полю при торможении корабля, обеспечивая законы сохранения энергии и ее кругооборот в вакуумном поле. Использование предложенного технического решения обеспечивает создание тяги в вакууме за счет взаимодействия с вакуумным полем как энергоемкой средой, имеющей электромагнитную структуру, и предназначено для реализации в конструкции межпланетных космических кораблей нового поколения. Кроме того, данное техническое решение найдет применение в энергетике и транспорте для производства электрической энергии и тяги. |
Формула изобретения: |
1. Способ создания тяги в вакууме
путем воздействия на рабочее тело системой вращающихся неоднородных
электрических и магнитных скрещивающихся полей, отличающийся
тем, что задают одновременно электрические и магнитные свойства
рабочему телу, вращая которое перераспределяют квантовую плотность
среды вакуумного поля внутри рабочего тела в направлении противоположном
вектору силы тяги в результате деформации вакуумного поля, при
этом вектор силы тяги расщепляют на нормальный и тангенциальный
вектора, нормальный вектор силы направляют на создание силы тяги,
а тангенциальный вектор на создание вращающегося момента, обеспечивающего
производство электрической энергии для питания системы неоднородных
электрических и магнитных скрещивающихся полей и системы их вращения,
причем силу тяги задают постоянной величиной на маршруте межпланетного
движения и устанавливают из условия эквивалентности создаваемого
ускорения, равного ускорению свободного падения на поверхности
Земли, периодически меняют направление вектора силы тяги и ускорения
на противоположное и обеспечивают движение в режиме разгона и
с последующим торможением. 2. Полевой двигатель для космического корабля, содержащий корпус, аккумуляторную батарею, систему управления тягой, магнитную систему и систему разнополярных электродов, отличающийся тем, что содержит электрогенератор, преобразователь напряжения и активаторы вакуумного поля, включающие электродвигатель, ротор, выполненный в виде рабочего тела из диэлектрического и ферромагнитного материала в форме усеченного конуса, основание которого соосно совмещено с ротором электродвигателя, преимущественно гиромотора, магнитную систему и систему разнополярных электродов, которые охватывают с зазором конус рабочего тела, причем полюса магнитной системы повернуты относительно системы разноименных электродов на угол 90o, таким образом, чтобы вектора напряженности магнитного и электрического полей образовали систему скрещивающихся полей, а группа активаторов соединена с осью электрогенератора посредством диска с его торца и снабжена устройством поворота активаторов относительно плоскости диска со средством шарнирного соединения, преобразователь тока аккумуляторной батареи снабжен регулятором частоты трехфазного источника напряжения для питания гиромоторов, а система управления тягой содержит регулятор напряжения магнитной системы и системы разноименных электродов. 3. Полевой двигатель для космического корабля, содержащий корпус, служащий также корпусом космического корабля, аккумуляторную батарею, систему управления тягой, магнитную систему и систему разнополярных электродов, отличающийся тем, что содержит кольцевые электрогенераторы, преобразователь напряжения и активаторы вакуумного поля, включающие электродвигатель и ротор, выполненный в виде рабочего тела из ферромагнитного диэлектрического материала в форме усеченного конуса, основание которого соосно совмещено с ротором электродвигателя, преимущественно гиромотора, магнитную систему, выполненную в виде многофазовой системы магнитных полюсов и систему разнополярных электродов, выполненную в виде многофазовой системы с одинаковым количеством пар магнитных полюсов и пар разнополярных электродов, образующих систему синхронно вращающихся в одном направлении электрических и магнитных полей с пространственным сдвигом на 90o векторов напряженности магнитного и электрического скрещивающихся полей, и охватывающую с зазором конус рабочего тела, при этом между магнитными полюсами и системой разнополярных электродов установлен изолятор из диэлектрического материала в форме конуса, кольцевые электрогенераторы установлены в корпусе полевого двигателя по периметру с внутренней стороны на двух уровнях и выполнены с неподвижными статорами и вращающимися в разные стороны роторами, с внутренней стороны роторов установлены активаторы вакуумного поля с наклоном оси к плоскости вращения роторов, причем угол наклона активаторов у одного из роторов противоположен углу наклона активаторов другого ротора, преобразователь напряжения снабжен регулятором частоты трехфазного напряжения для питания гиромоторов, а система управления тягой содержит регулятор напряжения магнитной системы и системы разноименных электродов, при этом активаторы по питанию разбиты на группы для регулирования тяги с любой из сторон космического корабля для осуществления его поворота при маневре. |
Патентный поиск
1. С помощью поисковых систем
С помощью Google:
С помощью Яндекс:
2. Экспресс-поиск по номеру патента введите номер патента (7 цифр)
3. По номеру патента и году публикации 2000000 ... 2099999 (1994-1997 гг.) 2100000 ... 2199999 (1997-2003 гг.)
|
Комментарии к статье:
Ответ Дмитрию Ватолину 10.05.17
Я не знаю такого физика и математика как Дмитрий Ватолин.
Мне довольно часто приходится сталкиваться c подобными амбициозными людьми. И я не считаю нужным делом для себя вступать с ними в бессмысленную полемику и тратить на это мое драгоценное время, учитывая колоссальную загруженность работой.
Но поскольку меня попросил дать ответ уважаемой мною Виктор Иванович Коротченко, то я это делаю с неохотой, поскольку не увидел самого вопроса, кроме оскорбительных в мой адрес фраз.
В этой ситуации я бы посоветовал Виктору Ивановичу без всякого объяснения удалить комментарии Ватолина с сайта. Пусть изощряется в другом месте. Ничего полезного для меня он не отметил, и навряд ли, может быть чем-то полезен в будущем. Если Ватолин хотел у меня узнать что-то для себя новое, то ему надо уметь задавать вопросы и задавить их в корректной и уважительной форме.
Читать ответ полностью ЗДЕСЬ.
Чтобы не быть голословным цитирую:
«…В векторной форме уравнение Пуассона (2) представляет собой дивергенцию градиента гравитационного потенциала, определяя свойства пространства как субстанции, обладающей идеальной упругостью…» - Безграмотная фраза. Лапласиан равен градиенту дивергенции, но ни как не уравнение. И чёй-то вдруг здесь затесалась «упругость»?
«Чтобы перейти от абстрактной величине гравитационного потенциала в (7) к реальному гравитационному полю, наделим вакуум упругой структурой…» - Бессмысленная фраза.
«…наделим вакуум упругой структурой, представив что он состоит из мельчайших частиц - квантов пространства, которые обладают свойством притягиваться друг к другу, образуя упругую квантованную среду (УКС)…» - Более менее содержательная фраза, но тогда зачем остальная многостраничная вода.
«В теории УКС [5] рассматривается методика электромагнитного квантования пространства с дискретностью порядка 10-25 м на микроуровне в рамках неподвижной лоренцевой абсолютно упругой структуры (Леонов B.C. Роль сверхсильных взаимодействий при синтезе элементарных частиц. В книге "Четыре доклада по теории упругой квантованной среды УКС". Отдельное издание по материалам 6-й конференции РАН "Современные проблемы естествознания". - С. -Петербург, 2000, с.3-14.) [5].» - Что такое интересно «неподвижная лоренцева структура»? Думаю, что безграмотное употребление слов. Кроме того, автор не уважает читателя, без пояснения употребляя эти выражения. И не отсылайте меня по ссылкам. Всё должно быть пояснено на месте.
«Решение стационарных задач деформации в теории упругости и механике сплошных сред определяется классическим уравнением Пуассона (7) и, в данном случае, определяется при замене гравитационного потенциала ϕ на квантовую плотность упругой сплошной среды ρ, которая характеризует количество частиц (квантов пространства) в единице объема среды (частиц/м3). Получаем новое перенормированное уравнение Пуассона, приведенное к квантовой плотности среды как непосредственного параметра упругих свойств упругого вакуума» - Откуда это взято? Почему читатель должен верить этому, когда автор не удосуживается пояснить сказанное?
«Выражение (8) характеризует состояние деформированного возмущающей гравитационной массой m упругого вакуума, и его решение позволяет найти распределение квантовой плотности вакуумной среды как для внешней области ρ1 деформированного пространства, так и для внутренней…» - С чего вдруг случилась такая деформация? Утверждаю, что никто не поймёт чего тут написал автор без дополнительных пояснений. Но ведь это первичный текст, который должен должен доносить суть идеи сразу.
Откуда получаем (11)? (13-15) – не пояснены. Откуда они вдруг взялись? Нет, Вы можете сослаться на мою тупость, чтобы объяснить почему я не понимаю «столь очевидное». Но ведь можно и сослаться на полное неуважение к читателю со стороны автора текста.
«Подставляя (25) в (24) получаем функции вектора деформации 2 внутри тела, испытывающего ускорение»
- Откуда взята формула 26? До этого об ускорении вообще ни словом. И что градиент какой-то плотности теперь есть «вектор деформации»? Почему? И т.д. И т.п.
Итог таков, что текст автора в лучшем случае безграмотен, в худшем - бессмысленный набор слов. Разбирать его – пустая трата времени.
Может быть автор хотел сказать следующее: Существует физическая среда, которую мы отождествляем с «вакуумом». Эта среда обладает такими-то и такими электромагнитными свойствами. Использование взаимодействия с этой средой, можно создать тягу для летательного аппарата. В частности, можно влиять на среду чисто электромагнитным способом и это вызовет гравитационные эффекты. Но тогда надо было это прямо и коротко сказать. Зачем столько воды и безграмотной математики?
Инженерная схема не пояснена в корне. Вот это:
«Система неоднородных полей воздействует на рабочее тело 21, обеспечивая его магнитную и электрическую поляризацию. Воздействие вращающихся магнитного и электрического полей обеспечивается за счет вращения рабочего тела 21. В результате внутри рабочего тела происходит перераспределение квантовой плотности среды вакуумного поля и создается неуравновешенная сила тяги, передающаяся активатору 25.» - Не пояснение! Ничего толком не понятно.
Откуда взято-то сказанное автором? Если скажете, чтобы я искал в других источниках, то зачем было лепить тогда Ваш текст?
Дмитриев Ватолиных в нашей стране много.
Уважаемый господин Дмитрий Ватолин, имеющий высшее образование, математик, работы которого опубликованы в научно-технических изданиях http://sibmathnet.narod.ru, автор оригинальных гипотез, например, см. статью "Гипотеза об отсутствии отдельных частиц" http://sibmathnet.narod.ru/goc.pdf , подтвердил, что это его комментарий на этой странице сайта.
Не разобравшись в сути публикации, мое поздравление физика-теоретика Леонова Владимира Семеновича с юбилеем подачи заявки на изобретение (патент РФ № 2185526), Д.Ватолин называет "идиотским перечислением заслуг и наград", "первым признаком лжи", "намеренным напусканием тумана" и т.п.
При этом Д.Ватолин никаких научно-технических аргументов не приводит.
Как любому ученому, математику должно быть свойственно логическое мышление, но в комментариях Д.Ватолина я не обнаружил не только нормальной логики, но и здравого смысла.
Ответ Д.Ватолину на его комментарий, я отправил письмом по электронной почте 6 мая.
Re от Д.Ватолина не поступило.
"Добрый день, Дмитрий!
Благодарю вас за интерес к проекту zg5.cosmotest.ru, тематике не реактивных способов движения в космическом пространстве и за опубликованное в комментариях ваше личное отношение к разработкам В.С.Леонова.
Каждому из нас инерция мышления мешает понимать новые, ранее неизвестные, физические законы. Человечеству понадобились тысячелетия, чтобы понять, что тела падают не вниз, а к центру Земли.
В своих теоретических работах Леонов предположил, что космический вакуум ..."
Читать продолжение
ЗДЕСЬ.
Посмотрите видеоролик (вчера разместил на сайте) "Магнитный конвертор Серла - Рощина-Година" на странице https://zg5.cosmotest.ru/leonov4.php об экспериментах наших физиков с воздействием на окружающую среду вращающимися магнитами, в результате которого изменяется измеряемое значение веса установки и возникает целый ряд других эффектов.
Авторы работы пишут: "Все полученные результаты крайне необычны и нуждаются в каком-либо теоретическом объяснении. К сожалению, интерпретация полученных результатов в рамках общепризнанных физических теорий не в состоянии объяснить весь комплекс наблюдаемых явлений".
Можно "придираться" к формулировкам формулы изобретения, но отрицать возможность создания бестопливного устройства для перемещения в безопорном пространстве уже невозможно - накопилось слишком много доказательств.
Спасибо всем, кто оставил свой комментарий, сообщение, вопрос или предложение.
Виктор Коротченко, руководитель проекта zg5.cosmotest.ru.
Проект в стадии разработки
Начало работ 15.03.2014 г.
Срок завершения работ 31.12.2099 г.
На первом этапе (15.03.2015 г.):
Определены основные тенденции создания облика Орбитальных поселений и
технические срества обеспечения межпланетных и межзвездных перелетов.
В качестве "градообразующего" предприятия планируется создать
околоземный Орбитальный центр летно-космических испытаний
"Космотест ГЕЛЛий".
© Copyright 2014-2017, |
Копирование материалов сайта без письменного разрешения
правообладателя запрещается.
|
|
Пожалуйста, обратите внимание на то, что на данном сайте выложена информация для бесплатного ознакомления с надеждой,
что она будет интересна и полезна, но без каких-либо явных или косвенных гарантий пригодности для любого практического
использования. Вы можете пользоваться ею на свой страх и риск. |